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Abstract— The Everyday Activities Science and Engineering
(EASE) Collaborative Research Consortium’s mission to en-
hance the performance of cognition-enabled robots establishes
its foundation in the EASE Human Activities Data Analysis
Pipeline. Through collection of diverse human activity infor-
mation resources, enrichment with contextually relevant anno-
tations, and subsequent multimodal analysis of the combined
data sources, the pipeline described will provide a rich resource
for robot planning researchers, through incorporation in the
OpenEASE cloud platform.

I. INTRODUCTION
Currently, robots have displayed remarkable feats that

would suggest they will soon be able to take over many of
our more onerous daily activities (cleaning, cooking, feeding
the dog etc), leaving us free to focus our energies elsewhere
(eating, petting the dog etc). However, the underlying truth
remains – these robots display such sophisticated abilities
due to their creators’ contextually precise, expertly crafted
planning algorithms. For this everyday robotic revolution to
occur, these agents will need to be able to react to vague
instructions and changing context, in a manner that more
closely adheres to human behaviors and abilities. So, how
may we identify and, more importantly, collect and describe
the missing pieces of this puzzle that would enable cognitive
robots to perform actions that approach the aplomb with
which humans are able to interact everyday, through habit,
common sense, intuition, and problem solving approaches
seemingly effortlessly developed throughout their lifetimes?

In this paper we present a novel data processing pipeline
for human activity recognition (HAR). To our knowledge,
our pipeline is the first to combine multimodal data collec-
tion, hierarchical and semantic annotations, and ontological
reasoning to enhance cognitive robots with human-like rea-
soning capabilities derived from everyday human activities.
The collaborative research center EASE (“Everyday Sci-
ence and Engineering,” http://ease-crc.org) has facilitation of
robotic mastery of everyday activities as its unifying mission.
The subprojects concerned with human activities data collec-
tion have the goal of providing so-called narrative-enabled
episodic memories (NEEMs). These data structures store
recorded observations, experiences and activities compiled
as a single coherent item. Another goal is the derivation of
pragmatic everyday activity manifolds (PEAMs), which will
form the basis for robot agent enhancement by enabling real-
time interaction similar to how humans function.
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Fig. 1: The EASE human activities data analysis pipeline

We start with recording of human activities in a kitchen
setting, preprocessing, and (optionally) supplementing with
outside data sources, before storing data in the openEASE
robotics knowledge base platform. Annotations, based on the
EASE-Ontology, are designed for cognitive robots. The auto-
matic annotators use different modalities and approaches, e.g.
multimodal activity recognition, speech recognition or object
tracking, thus complementing each other. Data produced
from further processing through manual and automatic anno-
tation, and subsequent analyses through a variety of machine
learning techniques, can then be queried in openEASE.
Based on performance in robotic activity scenarios, the
annotation schema can then be improved further. The results–
raw and processed multimodal data recordings, together with
annotations and data derived from analyses–are stored in
openEASE, a framework for knowledge representation and
reasoning, as shown in figure 1.

The NEEMs derived from research projects in EASE sub-
project area H (Human Activities Data Collection) provide
unique and critical contextual background for robots, based
on human activities, perceptions, and feedback. Analyses
of biosignals derived from brain, muscle, or skin signals
may provide insight into diverse aspects of human behavior
required for humans to masterfully perform everyday activ-
ities with little effort or attention. Through the integration
of analyses from a wide array of data sources, through a
multitude of complementary methods, we endeavor to build
an extensive, contextually dense reserve of activity experi-
ence and problem solving approach methods derived from
human behaviors to transfer effectively to robot systems. The
following examples are among those being employed within
the EASE-CRC at this time.

Brain activity measurements allow evaluation of atten-
tional focus while performing tasks, adaptation to ambigu-
ous or conflicting situations or physical obstacles, decision



making processes, and how motor imagery when viewing
performance of activities compares with in-situ motor exe-
cution. Skin and muscle activity sensors can indicate overall
mental state, and information about manual manipulation
interactions with objects, such as the force used. Full body
motion capture provides motion in an environment and object
interactions. Assessment of small scale hand movements
(including e.g. forces, velocities, trajectories, etc.) using
the PHANToM haptic interface Scene video from many
perspectives allows tracking of objects and the order of inter-
actions, insight into efficient movement within a space while
performing tasks. First person video provides understanding
of scene aspects people may focus on while planning and
executing tasks. Important information for a robot might
include attention (internal vs external) and visual search
strategies for objects or positions based on contexts such
as meal type, formality, or number of diners. Microphones
record scene audio, speech and non-speech vocalizations.
Through audio recordings of what a person thinks-aloud
while they perform tasks, we gain a rich description of
the scene as the performer sees it, obstacles encountered,
reasoning and problem solving approaches, frustration or
enjoyment, and the task process as a whole.

openEASE [1] is an online knowledge representation and
reasoning framework for robots. It provides the infrastructure
to store and access nonhomogeneous experience data from
robots and humans, and comes with software tools which
enable researchers to analyze and visualize the data.

EASE subprojects record human activity datasets (HAD)
in a range of scenarios. Data collection efforts focus on
contexts involving ”Activities of Daily Living” (ADLs) in
the kitchen, such as setting and clearing the table or doing
dishes. From these experiments, we are producing the multi-
modal EASE Table Setting Dataset (EASE-TSD), a dataset
featuring brain measurements using functional magnetic res-
onance imaging (fMRI) and electroencephalography (EEG)
during table setting related tasks, and the EASE Manip-
ulation Adaptivity Dataset (EASE-MAD), that focuses on
sensorimotor regulation during individual (atomic) actions
or short sequences, in detail. These experimental contexts
and data recordings are described in later sections.

Seamless integration of these datasets, annotations, and
derived models into the openEASE framework will provide
the solid foundation for robotic researchers to expedite devel-
opment of robotic agents that are more robust to unexpected
variations in task requirements and context, taking human
behaviour as inspiration.

II. RELATED WORK
A. Data for Activity Recognition

Activity recognition can be performed on a wide variety of
features and a large number of datasets have been provided
(for a review see [2]).

Recent approaches in activity recognition often work on
RGB-D data. These consist of RGB video and accompanying
depth maps and provide two useful modalities for human
activity recognition. Skeleton data can be recorded with

motion capturing or extracted from RGB-D data as in the
case of a Kinect. Other modalities, e.g. optical flow, can be
extracted from RGB data as well.

There are several other datasets featuring kitchen related
activities. “EPIC-Kitchens” [3] features head-mounted cam-
era video taken during kitchen activities performed by 32
participants in their homes, annotated with 125 verb classes
and 352 noun classes in varied languages. “50 Salads” [4]
uses 3rd-person camera (including RGB-D cameras) and
accelerometer-mounted objects to record meal preparation
sequences. “MPII Cooking Activities Dataset” [5] uses video
recordings of participants performing 65 kitchen activities
for pose-based activity recognition. The “TUM Kitchen
Dataset” [6] features video, full-body motion capture, RFID
tag readings and magnetic sensor data taken during activities,
processed with manual motion tracker labels and automatic
semantic segmentation.

B. Activity Recognition Models with Neural Networks

The specific properties of the various modalities have led
to different processing strategies. For instance, the RGB
channel can be processed with a spatio-temporal convolu-
tional neural network (CNN) [7], [8], [9], [10], either on its
own or together with derived optical flow [11], [12] through a
two-stream CNN or as a multistage CNN [13], [14]. Another
approach is to use recurrent neural networks (RNNs) for
processing of RGB data [15], [16], [17], [18], [19]. The depth
channel can be similarly processed with a CNN [20], [21]
or with a combination of CNN and RNN [22]. With regard
to skeleton data, processing with CNN can be enabled by
interpreting joint positions as image data [23], [24], [25],
[26]. There also exist RNN-based approaches [27], [28], [29],
a Deep Boltzmann Machine (DBM) approach [30] and a
Hidden Markov Model (HMM) with a deep network as a
state probability predictor [31].

C. Semantic, Multimodal Activity Recognition

In [32], semantic hierarchically structured actions are
recognized within the kitchen-related context of pancake
making, sandwich making, and setting the table in order
to transfer task-related skills to humanoid robots. Their
ontologically-associated knowledge representations of the
observed behavioral data, recorded as video, of people during
interactions with objects during such tasks is defined at
varying levels of abstraction. Semantic activity recognition
of kitchen ADLs (such as making pasta or taking medicine)
in the form of multimodal sensor data [33] has also been per-
formed, supported by a Semantic Sensor Network ontology
for worn and environment sensor information.

III. DATA RECORDING

A. Human Activities in a Pseudo-natural Setting

The EASE Table Setting Dataset (EASE-TSD) is com-
posed of multimodal biosignal data recorded during ex-
perimental observations of various table setting tasks per-
formed by participants in our Biosignals Acquisition Space
(EASE-BASE), as described in [34]. All signals are recorded



synchronously using Lab Streaming Layer (LSL) [35].
The recorded sensor modalities include: full-body motion-
tracking, audio (from a scene mic and head-worn mic for
speech), video from 7 mounted webcams and one head-
mounted eyetracker, and biosignals from muscle and brain
activity) from participants performing everyday activities
while describing their task through use of think-aloud pro-
tocols during the task (concurrently) and after the task is
completed (retrospectively) [36], as shown in Figure 2a-
b. For the EASE-TSD experimental recordings, 70 sessions
have been recorded, composed of six or more trials each,
totaling 470 concurrent and 405 retrospective think-aloud
trial variants. Over 37,400 transcribed words of the think-
aloud speech during these trials have been created, with
think-aloud encoding annotations underway. Over 16,600
action annotation labels, broken down into between 2 and
12 category sets, for these trials have been performed at
varying levels of granularity. Annotations and transcriptions
on numerous levels continue to be created as analyses
progress. Once the planned recordings with 100 participants
are finished and preliminary analysis is completed, the data
set will be made available to the public.

Fig. 2: Experimental data recording of participants a) per-
forming concurrent think-aloud trial tasks, b) performing ret-
rospective think-aloud trial tasks c) performing tasks during
fMRI, and d) performing tasks during stationary EEG.

B. Human Activities in a Controlled Setting

Table setting videos recorded from the first-person per-
spective are used in neuroimaging studies, using a 3-Tesla
MRI-Scanner as well as high-density multi-channel EEG sys-
tem, situated in an electromagnetically shielded room. Study
participants are tasked with actively imagining themselves
acting out the presented situations, thus employing motor
imagery [37], while their brain activity is measured.

While fMRI offers unrivaled spatial resolution and the
ability to accurately measure whole brain volumes, the
residential EEG-System provides high temporal resolution
and, in comparison to mobile solutions, offers the advantage
of less data contamination caused body movement and elec-
tromagnetic emission sources such as cameras, movement
detection systems and so forth. Due to its high number
of acquisition channels, it also allows for detailed source
localization of brain activity.

C. Adaptivity of Human Activities

The Manipulation Adaptivity Dataset (EASE-MAD) in-
cludes data from different sources that were assessed in
controlled VR settings. This approach allows for deeper
insights into the sensorimotor loop (SML), which is a model
concept for describing the integration of sensory and motor
systems that is the basis of continuous modification of
motor commands in response to sensory inputs. Whereas
basic sensorimotor loops have been successfully modeled
in several variants using control engineering approaches
[38], they cannot explain the effortless precision and vast
flexibility found in human voluntary actions.

Fig. 3: Data recording during adaptivity testing a) using the
PHANToM haptic interface that allows for force rendering
to interact with objects and tools in VR, and b) using optical
tracking to control a full hand model in VR. The head
mounted display is equipped with an eyetracker.

It should be noted, however, that observation of real-world
everyday activities only allows us to capture the sensorimotor
loop from the outside (i.e. analyze its outer PEAMs without
being able to directly address its inner laws. We seek more di-
rect access by closing the sensorimotor loop in virtual reality
(VR), in which we are, unlike in real world experiments, in
full control of the individual parameters of the environment
and actions. Thus, our main research paradigm will be to
intervene in the sensorimotor loop at different points of the
control chain [39], [40]). VR as experimental setting enables
systematic intervention beyond the physical limitations of
real world studies. This allows analysis of how cognitive
systems adjust to changing and ambiguous environmental
conditions and a systematic modeling of both the inner and
outer PEAMs of everyday activities.

Figure 3 shows experimental setups to record multimodal
data including e.g. grasping trajectories, hand pose and finger
positions during an action, or applied forces (assessed with
an PHANToM haptic interface (e.g. [41], [42]). For a detailed
description of data acquisition methods for the EASE-MAD



Dataset and the underlying approach to investigate human
sensorimotor adaptivity see [43], [44], [45].

IV. DATA ANNOTATION

A. Annotation Schema and Ontology Integration

Annotation and transcription schema developed for the
EASE-TSD to describe aspects of everyday activities per-
tinent to robotic planning algorithm improvement, and are
therefore aligned to the EASE Ontology, are used to annotate
video and transcribe audio from speech recorded during
the EASE-TSD trials. The annotation schema for video-
based recordings are hierarchically-structured semantic de-
scriptions of events at increasingly fine-grained levels of
detail. The highest level is the task phase (planning, object
retrieval, etc.). Below that are specific recurring action types
(picking up objects, searching for places to set them on
the table). Actions are further broken down into motions
(picking = reach, grasp, lift, retract arm) for each hand or
other differentiating criteria. When multiple actions occur
simultaneously, multiple annotation tiers are required.

B. Annotation Process

Annotation of various modalities is performed in accor-
dance with the requirements for each type of data, first
manually then through automated processing. For the EASE-
TSD, the annotation and transcription processes are primarily
performed in ELAN, as seen in Figure 4. For each trial,
annotation or transcription is performed by one person, then
checked by a second. As more data is collected and anno-
tated, additional annotations will continually be performed
by additional annotators on previously annotated data, then
followed by inter-rater reliability scoring.

Fig. 4: ELAN is used to create transcriptions and annotations
from audiovisual and biosignal data.

Video from multiple angles is used to label time segments
where a person is performing specific actions. Frames from

these videos are used to obtain information about the number,
layout, and positioning of objects within the scene.

Transcription of speech is performed for both concurrent
and retrospective think-aloud protocols, with the final goal of
transcription by at least two transcribers. These think aloud
trials are then coded based on an utterance level schema,
to describe the types of thought processes and topics each
participant thought relevant to the task at hand at the time.

V. ANALYSIS

A. Human Activity Recognition with Multimodal CNNs

Within our pipeline, we would like to automatically anno-
tate our data. For annotation of video, we used a multimodal
fusion approach based on CNNs.

Multimodal fusion is a popular approach to increase the
performance of a machine learning system by using several
data jointly. It comes in different flavors, with early, late
and hybrid fusion being the primary distinctive types [46],
with the main difference being where in the processing
chain the fusion takes place. All those different types come
with different advantages and challenges. The most simple
fusion is probably late fusion [47]. Here each modality is
processed separately and results are fused afterwards. It
allows for maximum flexibility in choosing the processing
method for each modality, so that one could use sophisticated
unimodal systems (e.g. classifiers) and combine their outputs
by i.e. summation, averaging or majority vote. It lacks the
potential to exploit possible cross-correlations which may
exist between the different data. Early fusion [47] offers
a way to exploit those. Here, either raw data or data pro-
duced by feature extraction are fused in the beginning of
the processing, in the most simple case by concatenation.
Afterward the combined data are processed together. This
approach requires that the input data are aligned, which
might not be trivial when one has to deal with different
dimensionality, sampling rate etc. Furthermore there is no
choice of specialized approaches for separate modalities; the
chosen approach has to fit the joint data.

We have developed a system which allows for the fusion
at arbitrary layers. We define a splitting point within the
network, up to which the different modalities are processed
separately. Afterwards the merged layers are processed by
the remaining network. The underlying architecture of our
CNN is a “Kinetics I3D” [12] which uses “Inception 3D”
units for spatio-temporal processing.

We have used an early fusion CNN approach for this work
since in [48] we could show that for activity recognition early
fusion performs better than late fusion. For early fusion the
individual modalities are processed by the first convolutional
layer separately. Its results are fused by concatenation for
further processing. Figure 5 shows our architecture for early
fusion. Apart from the fusion step, it is a standard “Kinetics
I3D” implementation in TensorFlow [49] with sparse softmax
cross entropy for loss calculation during training.

Based on the RGB videos, optical flow has been computed
with “FlowNet2” [50]. The original full HD RGB videos
were rescaled and cropped to 224x224 pixels, the same has



Fig. 5: Early fusion of multiple modalities in a CNN. The
modalities are processed up to a specific point in individual
paths, then fused by concatenation for further processing.

been done with the optical flow videos based on the RGB
videos. See [48] for details of the multimodal network.

The EASE-TSD videos are typically several minutes long.
To process them, the data has been chunked into slices during
pre-processing. For each slice, we extract the associated
ground truth labels which are present during the time slice.
Since there can be more than one active label in the time
span of a time slice, we have enabled our system to produce
multi-label outputs as well as single labels. The multi-label
training uses binary cross-entropy as the loss function while
the single label variant uses categorical cross-entropy.

Depending on the granularity of the activities within the
hierarchy, different time slices might be most useful. For low
level actions like reach or pick, a brief time window of
250ms might be sufficient, while a higher level composed
action like pick & place might not be properly recog-
nized, requiring a longer slice of up to 2s.

B. Speech Processing

Alongside the human-data table setting recordings, verbal
reports of the performed actions and thought processes are
recorded. As soon as a new speech recording is present,
human transcribers are assigned to a transcription process,
which is specified by explicit transcription rules. Automatic
speech recognition with pretrained Kaldi acoustic models
trained on the GlobalPhone corpus together with a language
model enhanced by the previous transcripts is employed
to aid the transcription process. A custom ELAN plugin
generates a transcript with fine grained segments.

C. Multimodal Biosignal Action Recognition

The analysis of fMRI-data is based on different method-
ological approaches. Statistical models such as the General
Linear Model (GLM) and Independent Component Analysis
(ICA) allow contrastive analysis of differences in spatiotem-
poral patterns of brain activity related to annotated semantic
episodes within a perceived point in time during video pre-
sentation (e.g. pick up, place, carry), thus leading to detection
of distinct neuronal networks correlating with ontological
categories. In particular, focus will be on the analysis of
the level of neuronal network complexity during planning

and execution of complex everyday activities. NEEMs and
PEAMs generated from these categorized episodes of brain
activity will then be contributed to openEASE.

Building on this knowledge of brain areas that are closely
correlated in their activity to ontological categories, further
research will also aim at developing algorithms that predict
stimuli and semantic episodes on different levels of complex-
ity. Thus, a semi-automatic scene recognition approach will
be developed which can feed information into the planned
process of automatic activity recognition and its annotation.

Furthermore, the combined use of multi-channel EEG and
fMRI allows for a detailed examination of spatiotemporal
characteristics of event-related brain activity [46] by using
the spatial activation patterns derived from the analysis of
the fMRI-data as seed regions for fMRI-constrained source
analyses of EEG data [47]. EEG data will be first examined
via Fourier analyses (FFT) and band-pass filtered according
to oscillatory specificities of ontologically different time
periods identified by topographical signal space analyses.
Source analyses techniques will then be applied to determine
characteristics of the spatial distribution and the spatiotem-
poral complexity of different periods of table setting action.

For EASE-TSD biosignal-based action recognition, we
work toward a model to decode arm movements involved in
object manipulation during typical table setting tasks from
brain and muscle activity signals, captured by mobile elec-
troencephalography (EEG) and electromyography (EMG)
sensors. A subset of 50 EASE-TSD trials performed by 15
participants, manually annotated at the lowest level of arm
motion, were used as the basis for multi-class classification
using a convolutional and long-short term memory (CLSTM)
model on spatially and temporally extracted features de-
rived from EEG and EMG data. This subset of data was
recorded using mobile EEG using 16 channels on the scalp
as well as 4 EMG sensors each placed on the forearms.
After undergoing channel selection, preprocessing, and then
statistical and spatiotemporal feature extraction, this became
the basis for classification of pick and place activities. For
this experimental scenario from the EASE-TSD, we used
recordings from experiments performed by 15 right handed
participants, 8 male, with age ranging from 20 to 30 as
described in [51].

At the lowest level, data from sensors placed at four
positions on each arm (e.g., on muscles controlling hand
activity of the right forearm) and scalp (e.g., motor regions
on the left hemisphere) is used to classify hand movements.
EEG data is further filtered to the frequency bands typically
corresponding to motor imagery or motor execution–the al-
pha and beta bands from 8-12 Hz and 12-30 Hz, respectively.

Initially, manually labeled segments such as ‘reach’,
‘grasp’, ‘release’, and ‘retract’ were used for leave-one-out
session-independent classification in a supervised manner.
To classify these actions using EEG and EMG data, we
use a combined CNN/LSTM approach as described in [51].
This analysis will provide the basis for additional custom
ELAN recognizer plugin development, to generate activity
annotations based on multimodal biosignals.



Fig. 6: Transfer of human data to robot control. (A) Data
assessment using the PHANToM haptic interface is (B)
combined with VR presentation, to (C) control a robot.

VI. ITERATIVE EXECUTION AND IMPROVEMENT
THROUGH INTEGRATION WITH ELAN AND OPENEASE

The collection of data ultimately serves the purpose of
improving the performance of robot systems and enabling
them to execute certain actions within the given context
and environment. To make the collected data available to
the openEASE robotics platform, the detected activities and
objects must be translated into a format known to the robot–
high-level action plans, such as move to position Z
or place object X on surface Y.

As depicted in figure 6, a pilot demonstration has shown
that human data from the EASE-MAD can be successfully
transferred to robot actions. In this use case, the task was
to place a delicate object, such as a fragile wine glass, on a
table. The data were assessed in VR using the PHANToM
haptic device in order to present the subjects with realistically
rendered forces during placing actions along with the visual
sensory feedback. The idea was to transfer the skill of a
fast movement with force control to the robot. The resulting
end effector variables were suitable to enable the robot to
perform the action in an appropriate fashion, i.e. in a real
world application it would have been able to lift and to place
the glass without breaking it. This approach only comprises
a limited range of variables for a short sequence of actions.
More complex plans, even though rather abstract in nature,
can be executed by the CRAM framework [52].

VII. RESULTS

A. Human Activity Recognition with Multimodal CNNs

We could show that for activity recognition an early fusion
approach is better suited than the classic late fusion [48]. For
the evaluation in this work, we have used an early fusion
architecture with RGB video and optical flow as modalities.
We have evaluated the performance on a cross-subject split
of the EASE Table Setting Dataset where one recording
session (session 17) featuring a specific subject was used
as the validation set while seven other sessions featuring
other subjects were used as training set. The time slice
was set to 0.53s (16 frames with 30 fps) for both training

and evaluation. With this setting there 29872 data items
for training and 8107 for validation. We have achieved an
accuracy of 87.8% for the multi-label task and 80.6% for
the single-label task on the validation set. Figure 7 shows a
plot from one of the training sessions.

Fig. 7: (a) Accuracy and (d) loss plot for training (blue) and
validation (orange) set.

(a)

(b) (c) (d)

B. Multimodal Biosignal Action Recognition

Brain activity of 30 participants was measured in an
EEG-study, consisting of four 1st-person Videos. The videos
were annotated according to EASE-ontology, resulting in 312
distinct episodes of various categories and complexity levels.
An fMRI-study with 30 participants consisting of ten 1st-
person videos was recently finished, with an overall number
of 1461 annotated episodes. Preliminary ICA results from
this study point out brain areas that discriminate between
object interaction events and episodes of no object interaction
during the presentation of the videos, as illustrated exemplar-
ily in figure 8. These will later serve as seed regions for the
analysis of EEG data.

For the person-independent multi-class motion classifica-
tion of EASE-TSD trials using a convolutional and long-short
term memory (CLSTM) model on EEG and EMG data, the
results indicate that EMG features alone provided a better
basis for classification at this level of activity. While the low
level segments were too brief to extract meaningful informa-
tion from the EEG sensor data, classification performance
on features derived from EMG sensor data reached 59%
accuracy for the right hand movements (MR) and 61.3%
accuracy for the left hand movements (ML). Precision for
ML was 0.97 vs 1.00 for MR features, recall for ML was
0.95 vs 0.92 for MR, and f1-scores for ML were 0.97 vs
0.95 for MR. Confusion matrices for all combined ML and
MR runs are shown in figure 9.



Fig. 8: Brain areas susceptible to stimuli of object interaction
events (red) and events with no discernible interaction (blue)
during the presentation of a table setting video.

Fig. 9: Confusion matrices for classifications of motions
performed with the left and right hand for 4 classes.

VIII. CONCLUSION

Through large-scale collection of human activities of
daily living data, annotation with contextually relevant and
ontologically linked labeling schema, analysis with diverse
multimodal methods for a wide range of sensor modalities,
and ultimately, incorporation into the OpenEASE robotics
cloud platform, the EASE human activities data analysis
pipeline provides the rich groundwork on which to build
cognitively-enhanced robotics for use in everyday scenarios.
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